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This article concerns the question of a proper stochastic treat-
ment of the spin-echo self-diffusion attenuation of confined par-
ticles that arises when short gradient pulse approximation fails.
Diffusion is numerically simulated as a succession of random steps
when motion is restricted between two perfectly reflecting parallel
planes. With the magnetic field gradient perpendicular to the
plane boundaries, the spatial distribution of the spin-echo signal is
calculated from the simulated trajectories. The diffusion propaga-
tor approach (Callaghan, “Principles of Nuclear Magnetic Reso-
nance Microscopy,” Oxford Univ. Press, Oxford, 1991), which is
just the same as the evaluation of the spin-echo attenuation by the
method of cumulant expansion in the Gaussian approximation,
with Einstein’s approximation of the velocity correlation function
(VCF) (delta function), agrees with the results of simulation only
for the particle displacements that are much smaller than the size
of the confinement. A strong deviation from the results of the
simulation appears when the bouncing rate from the boundaries
increases at intermediate and long gradient sequences. A better fit,
at least for intermediate particle displacements, was obtained by
replacing the VCF with the Oppenheim—-Mazur solution of the
Langevin equation (Oppenheim and Mazur, Physica 30, 1833-
1845, 1964), which is modified in a way to allow for spatial
dependence of particle displacements. Clearly, interplay of the
correlation dynamics and the boundary conditions is taking place
for large diffusion displacements. However, the deviation at long
times demonstrates a deficiency of the Gaussian approximation
for the spin echo of diffusion inside entirely closed pores. Here, the
cumulants higher than the second one might not be negligible. The
results are compared with the experiments on the edge enhance-
ment by magnetic resonance imaging of a pore. © 2001 Academic Press

Key Words: molecular velocity correlation; nuclear magnetic
resonance; spin-echo; restricted; confined self-diffusion; spin spa-
tial coherence; porous system.

1. INTRODUCTION

Different theoretic approaches have been developed to descr
the spin-echo attenuation of restricted diffusion. Two of thes
are notable in being distinct in performing the average of tr
spin phase to get the spin-echo attenuation. These are
propagator methodl( 3, 4 and the method of the cumulant
expansion in the Gaussian approximatiér&. The purpose
of this paper is to test these methods with the results
computer simulation of the spin-echo signal distribution in a
entirely closed pore, as well as with the previously publishe
results of simulationq) and experiments on magnetic reso:
nance imaging (MRI) diffusion edge enhancemet@)(
Although the use of magnetic field gradients to detect th
translational displacement of molecules via the precession
their atomic nuclear spins dates back into the early days
NMR (11), some obscured problems concerning measureme
of diffusion in a system, for which restriction to motion cause
a deviation from the Fickian behavior, still remain open. Th
Bloch equation with the diffusion term (Bloch—Torrey equa
tion) (12) has been introduced to describe the spin-echo atte
uation in a bulk of homogeneous liquid, while Stejskal an
Tanner (3) initiated the methodology and theory of the pulse
gradient spin echo (PGSE, Fig. 1) for measurements of r
stricted molecular self-diffusion. The self-diffusion coefficien
reduces due to molecular collisions with barriers when the tin
interval between the gradient pulses is long enough. The PG
method has been extensively investigated. A number of studi
consider various problems of molecular self-diffusion in i
bounded region, using the diffusion propagator from the fami
iar Einstein’s formula 14) for Brownian motion (leading to
Fick’s diffusion equation) to average out the motional spil
phase fluctuations. Among others, Callaghan has found t
diffusive diffraction of the spin-echo signal as a function of the
gradient magnitudel( 4, 15. The method provides informa-
tion about the microstructure of a heterogeneous system

The advance of NMR measurement techniques, such rastly from the PGSE measurements. Although spin pha
spin-echo and magnetic resonance microscopy, enables aal@raging with Fick’s diffusion propagator was able to disclos
tailed study of self-diffusion in fluids confined in a porousiew effects, its application is limited to the spin-echo sequen
medium. Here the influence of boundary restriction has imparensisting of two short gradient pulseks).
tant implications on molecular motion and fluid transport. Fick’s diffusion equation, which is commonly used to derive
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4 i L2 5 ulation and with the results of previous experiments on th
! edge enhancement in the magnetic resonance imaging. Inst
of simulating the mean spin response from the bulk of sampl
as has been shown in many referendds (7, 26—28we deal
here with the spatial distribution of the spin-echo signal in
: small compartment. In Ref9), the signal distribution has been
| studied by the use of the impulse-propagator method based
the matrix multiplication for long gradient pulses. This metho

G . numerically overcomes the short pulse limit of the propagatt
— approach, but for long evolution time the spectral distortio
appears which unreality broadens the image far beyond t

d edge of the sample. Although it provides a similar signe

intensity compared to our results, here a simulation method

FIG. 1. The combination of RF and gradient pulses for a PGSE expeiteeded that provides distribution with higher accuracy for
ment. The symbob represents the length of the gradient pulses the time precise comparison with theories.

between two successive gradient pulses. Spin-echo peak appears after time zl'he simulated spatial distribution of the spin-echo sign:

from the start of the experiment. . . . )
represents an equivalent of the MR image, if assuming the d:
acquisition interval to be short enough, with respect to th
the propagator, is adequate in describing the underlying pioverse rate of the diffusion attenuation. Otherwise, the spi
cess of spin phase fluctuations only after some informationésho attenuation within the readout interval cannot be neglect
lost by limiting the precision of temporal and spatial measuré-might unnecessarily complicate the calculations. The results
ments {, 18. The equation might describe a process on simulation can also be compared with the results of MRI diffusiv
cruder level than a process of diffusion in a small restricteztige enhancement obtained in Reif), 9-32.
region allows for. This means that the application of the

propagator method to the restricted diffusion, when the parti- 2. THEORY
cles’ mean displacement is comparable to the size of pore, is
quite questionable. 2.1. The Mean of the Spin Phase Fluctuation

In parallel, the method that handles the spin phase averag . e .
with the use of cumulant expansion in the Gaussian approxi—%\/rzjentehver a nonumfogm tma%netm ft|gld |stﬁse?h|n NMRt.t(
mation (L9, 20 has been introduced. This method links th ncode the spin magnetization for motion rather than positio

single-particle velocity correlation function (VCF), which con''s appr_o_pnat_e to refocus any spin phase shift, dug 0 gbsoIL
pin position, in a spin echo. This means that the time integt

tains details of motion and interaction on the molecular Ieveﬁ . X . .
to the spin-echo variables. It enables one to observe the wo fothe effective gradient(t), is zero. A small perturbation of

of microscopic motion through the window, whose opening ! (TdSpm prl:])ase, .ctitue togmglecglar c}lipgc;erﬁerlt?jln_the_mggn(
determined by the form of the gradient pulse sequeted?. Iet ' Catndte:/” ?:nta_( T)f‘_Gyt’ v (2). rt(h) ime of th
Properly shaped sequences become a tool to acquire infonﬁ ) - v()dt. HereF(t) =y [, G(t')dt’, 27 is the time of the

tion, not only about macroscopic flow and diffusion, but alsB"as€ refocusmg“t) IS the mlstantaneous posn!on of Fhe
about the motion on a molecular levélX, 24. For the spin- particle, and/(t) is its velocity. Since the detected signal arise

) . ) ) A
echo attenuation caused by restricted diffusion, this appro%%m the induction of immense number of spins1(0’), one

provides a new understanding of the phenome&nd (29 oes not detect the frequency fluctuations of individual spin b
Both methods give an identical result for the fre’e diffusioFIather a coherent superposition of signals induced by this lar

described by Einstein’s formula for the VCHA4), but the numberi Of. spins. Regardi_ng their location .in. a n_onunifom

restricted diffusion is an example where a difference occdg%agr?encﬁeld, parUcuIarIy in MRI, one can distinguish group

(6, 7). The experiment2b) verify that the cumulant expansion0 spins according .to their precessmna! fr_equency at the tin

in the Gaussian approximation properly describes the sp@t' For such grouping, the averages within the subensemb

echo diffusion measurements in a medium of interconnecteg. to be performed. Thus, the spin-echo signal peak can

pores when a long or modulated gradient sequence is appli\@’&'.tten as ()

However, it has been also confirme6) (that this method ,

predicts less distinctive pits of the diffusive diffraction pattern E(27) = 2 Ejp(e o Ao [1]

(6) in comparison to the results obtained by the propagator i

method {5) for the diffusion in a system of completely closed

pores. Here the summation is taken over the subensembles of sp
The aim of this paper is to set the measure for compariagd E, is the normalized amplitude of th¢h subensemble.

these theoretical approaches with the results of numerical sin-.) denotes the ensemble average over the motion of partic
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in the jth subensemblev(t) can be considered a stochastitations based on the spin phase averaging using the cumul
variable and the average can be treated within the frame of #wansion in the Gaussian approximation. This theory giv
theory of stochastic process. The mean of spin phase flucttlge spin-echo signal of confined spins &s7, 10

tions is commonly worked out with the use of the diffusion

propagator. The method has been introduced for molecular ,

transport in microporous crystallite8)( where Fick's propa- E(27) = > Eg Sc(Fy)e!Faln@g - (1/2ak R (2n, [3]
gator for the free diffusion was used as an effective averaged ik

diffusion propagator to describe the diffusion in heterogeneous

systems. Despite the fact that the propagator for unboun

d . . .
diffusion could have a limited validity when boundaries restri(éﬁ’IIS expression comprises the structure terms of spin deph

molecular motion, it provides a satisfactory explanation gpain |3_verse s&ace & (F) that gr(ej_attlenuated;y thf:‘ﬁctor
diffusion measurements in confinements. A number of exattPcdiNg on the mean squared disp acerrier) of the

solutions for the propagator in different geometries are avaﬂ?rt'cIe (MSD) from thgth subensemble. The wave v_ectkrs

able by solving Fick’s law using the standard eigenmocf’el[e related to th_e a_llowed mom_entum stat_es of confined pa

expansion 33). cles. The subscrig in MSI_D an_d in other varlab!es denot_es the
Since the form of Eq. [1] is like a characteristic function Of:_onjponent al_ong th_e d|r_ect|on of the a_pplled gfad'?”‘- :

a stochastic proces84), one can employ the cumulant expan—Slmllar result is obtained in Refl(i)_ by using the_d_lf_fusmn

sion method known from the theory of probability to calculatgr()pa?ator methqd. B(.)th r_esults _dlf_fer in the _def|n|t|0nqu

the mean of the spin phase. According to general theoremsalif Rg_. They are identical |2n the limit of short intervals when

statistical physics, the characteristic function of a stochas Dis a_pprommated aRg.(ZT) = ZDZT and when a se

process exists, even if the propagator does &8t 85. This quence with the s_hort gradient puls&_as g_ngs= YGd. How-

means that a stochastic process is fully described either by we" the generalized form of MSD is given by

probability distribution function, i.e., the propagator, or by the

correlation functions. The characteristic function generates cu- o [ 2n

mula_mts,_ i.e., the combination _of mom_ents, which are the st(Zr) _ J j (Vg (t) V(1)) dt,dt,. [4]

multiple integrals of the correlation functions. In the parlance o 4o

of NMR, this means that evaluation of the spin phase average

can be justified either with the propagator method, if we know

the distribution function, or with the cumulant expansion, wheRere the VCF{v,;(t,)v(t,)), contains the microscopic details

the moments are known. Exact distribution function or alf molecular motion in a confined space. Clearly, VCF depen

correlation functions are hardly ever available and the problegf the duration of the measurement as well as on the locati

can only be handled with approximations. The cumulant exf the jth spin subensemble. The phasing fadtqr (10) rep-

pansion method in the Gaussian approximation allows us sents the average dephasing of aspin irjtﬂnsubensemb]e,
assume that the cumulants higher than the second canwifich is, in generalized form,

neglected. Thus, the characteristic function is defined only by

the averagév(t)) and the second momeni(t,)v(t,)). Thus

the cumulant expansion of the spin phase (which is like a f\f/foT dty [ dtF(ty) - (vg(t)vg(t)) - F(ty)
characteristic function, Eq. [1]) provides aj = Ry (27) - [9]

(e 5 F(t)-v(l)dl> =g I ZF)-(v(b)dt _ _ ) ) ) _
The unit vectorf is aligned along the direction of the applied
X @~ (U2 [§ dt [ 57 dtF(t)-(v(tnv(ta))eF(tz) [2] gradient.
The stochastic process of spin locatigt), which is derived

Here the subscriptin (. . .). means the cumulant combinationfrom an underlying process of the velocity fluctuations), is

of the first- and the second-order momerd4)(((ab). = (ab) not in general Markovian, but acquires the Markovian chara
— (a)(b). ter after some information is lost by limiting the precision o

spatial and temporal measurements. Thus the conditional pre
ability coincides with Fick’s diffusion equation for the values
of t much larger than the correlation time of molecular colli

In porous media of closely packed polystyrene beads, thi®nsr. (Einstein’s approximation) and for the spatial resolu
measurement of restricted diffusion by the modulated gradidign limited to a scale larger than the molecular mean free pa
spin-echo method26) confirms the anticipated dependence df The resulting conditional probabilit,(r, t|r,), which is
spin-echo attenuation on time, gradient strength, and modutammonly used to get the spin phase average for short gradi
tion frequency. The results perfectly correspond to the calgoulses, is related to VCF in the form

2.2. Spin-Echo Distribution in a Pore
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1 0 O Attention is focused on the diffusion of molecules inside
(vj(t)vi(t)y =2D| 0 1 0]5(t; — ty). [6] c!oseq_pore with pe_rfectly re_ﬂecting walls. For the_sake_ C
0 0 1 simplicity, we deal with one-dimensional problem, with spin.

bearing particles trapped between parallel plaxes 0 and
Here D denotes the macroscopic self-diffusion constant. %= @, and with gradient applied normal to the planes. In thi

simplifies Eqgs. [4] and [5] to case the MSD of a spin located xatin the direction of the
applied gradient is36)
Ry(27) = |2D27 [7]
1 a
and Ra(t, X) = af (X" = X)2Po(X’, t|x)dx’
0
1 27 ) 1
Fo =112, |F(ty)|%dt,. (8] =3 (a2 — 3ax + 3x?
0
Thus, the cumulant expansion in the Gaussian approxima- + > 4alx + (az— 2x)(—1) )
tion provides an identical result as the propagator method, but n=1 nem
it allows one to apply any kind of gradient pulse sequence. The
gradient pulse width or shape can violate the short pulse > Co{nﬂ-x]e(nzwzlaz)m [11]
approximation required for the use of the propagator method. a

This means that Einstein’s approximation (or Fick’s propa-
gator method) can be used for restricted diffusion only Wh%{hd the VCF in the second approximation is
the spin-echo sequence is short enough that a majority of
spin-bearing particles do not reach the compartment bound-
aries. The delta function is a reasonable approximation for the
VCF when the rate of intermolecular collisions is much higher
than the rate of collisions with the walls, < 27 < 7,,. This
means that a better approximation for the VCF is needed for ZD(

2

1d
(Vi(DV(0)) = 5 iz RE(L, %)

longer times, when 2 =~ 7,. It can be solved by using the
probability distribution function from Fick’s equatioR(r,
t|r,) to calculate MSD according to the formula

X nzwzcos[

5 -
(1 + 3 3 (5 + (a=x)(-1)")

n=1

nm
? X]:| e*(nzﬂzlaz) Dt) . [12]

In addition to the short correlation of the local stochasti
motion, VCF features a long negative time-tail with the deca

[gne proportional to the time-of-flight across the porg,~
a‘/D. The average of VCF over the pore volume is

Ri(t, r) = j (r —rg)2Py(r, tlro)d3ry,. [9]

Its second time derivative provides VCF, which is needed
get the phase factdt,(r) from Eqg. [5].

In the following, we deal with the spatial distribution of the
spin-echo signal. Therefore, we have to extend the formula for "
the mean spin response from the bulk of sample Eq. [3] to them = 2D| (1) — 2 3 e (@-vmanon) 3]
formula for the spatial distribution of the spin response. In s a -
order to neglect the effect of the gradient to attenuation in the

readout interval, we assume the data acquisition inted#al,

short compared to the inverse rate of the diffusion attenuatigh!i résult is identical to the solution of the Langevin equatio
87 < 1/FZD. Then the spatial distribution of the spin-echéor particles confined between parallel planes that was obtain
2D.

signal, induced by thith subensemble of spins located arounBY OPPenheim and Mazur2) long ago. The simulation of
r, can be written as molecular motion in a system constrained by capillary wall

gives, on hydrodynamic grounds, a similar negative decay
algebraic form 87). Recently, it has been verified experimen.
tally by the method of modulated gradient spin ecBb)(

For the diffusion between parallel planes, the spin-ect
[10] amplitude exhibits the spatial distribution

BE(2r, 1) = Eo(r) 3 Si(Fy(r))e! e Kre (2Kerienn,

k
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the constanD. The Brownian particle obeys Fick’s diffusion

law P = DV?P. P(x, t) is the probability density that a

particle moves by in timet. The well-known solution for the

special case of unrestricted Brownian motion with the initi
; [14]  conditionP(x, 0) = 8(x) is

> Su(Fa(x))co

n=0

SE(27, X) =

S{n ] collisions with surrounding particles and are associated wi
aa

— X

a

% e—(l/z)(nsz/a2>Rg(2T,x>

with P(x, t) = g~ (x*4Dy, [19]

1
\J47TDt
) 1-— (_1) ne—iFa(x)a
S\(Fa) = 2iF(x) nZm? — F2(x)a’ [15] This is the Gaussian function with its maximum at the origit
2 and whose width grows with a square root of tira&x*(t)) =
\V/ 2Dt.

The random walk displacementy, is therefore given by

forn > 0 and

_ a-iFa(xa

SO(Fa(X)) . W. [16] AX = \/ZDAtf, [20]

. . . whereé is a random number. The random numbers are uncc
These formulas will be used to compare the spin-echo distri-

S . . . related and they are distributed according to the Gaussi
bution in a pore to the results of the numerical simulation. . """ . .
distribution witho = 1,

3. SIMULATION

1
— ~(£212)
The validity of theoretical models has been tested by the P(£) \/ﬂ € ' [21]

computer simulation of the Brownian motion in a restricted

space. Instead of considering the mean spin response from theo 4 restricted space the particle trajectory is obtained |
bulk of sample, the simulation has been focused on the spag§|ng Egs. [17] and [20] and corrected with the boundar
distribution of the spin-echo signal within two parallel reflectzondition. For perfectly reflecting walls locatedxat= 0 and

ing planes. . o x = a, the reflecting boundary condition is accounted for b
A common way to simulate self-diffusion is to represent thF‘epIacingx with —X. or X with 2a — x. wheneverx < 0 or

diffusion as a random walk of particles. The par.ticle motion i~ a, respectively. We are dealing with a pulse sequence wi
represented as a sequence of small random displacementsy,q gradient pulses of streng@ and duratiors, separated by
time A. The gradient is perpendicular to the plane boundarie
X(t+ At) = x(t) + Ax, [17] The simulated spin phase shift for a single spis given by

wherex(t) is the position of the particle at timg x(t + At) (=5 teAts

is the position attimé + At, andAx is a random displacement 0,(27) = 6, = vGAL(S x() — S x(1). [22]
of the particle in the time intervalt. Stochastic properties of
the random displacement are associated with stochastic prop-
erties of a Brownian particle. The position of a free Brownian
particle may b‘? treatgd asa Markc_)v process on a coarse g, jated phase shift is different for every trajectory. T
scale. In one dimension the Brownian particle jumps back an

forth al h s J h lenath. Th S Iculate the spin-echo distribution, we divide the space attai
orth along thex-axis. Jumps may have any fengtn. The proly, . ., ¢hing intan, equal parts of lengtha = a/N,. N, thus
ability is symmetrical and independent of the starting positio presents the number of pixels in the image aadis the
and falls off rapidly for large jumps. Stochastic properties g

the particle displacementx in the time intervalAt (At — 0) ipzttl?:"ree;rc::gt;)r;.f fhpems-g?nriir? ; t;: aipligsglisgiti?/ ha at
are ' '

t=0 t=A

Since the particle position randomly varies with time, the

A _ @0y (A7)

(AXx) SE(x, 21) = % (> cos6)2+ (D sin6)? [23]
At At ’ At

0, [18] i€l i€l
where D is the macroscopic self-diffusion constant. Microwherel is the set of all trajectories ending withika at x in
scopic random displacements of the particle are the resulttohe 27: | = {i; x(27) € [Xx, x + Aa)}.
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FIG. 2. Simulated signal for free self-diffusion as a function of time 2t for the PGSE measurement, wheke= § andr ~ A. System parameters are
the following:D = 2 - 10°° m%s,G = 0.5 T/m,t = 27 = 0-13 ms.Simulation results are represented with a solid line. The dashed line represents
theoretical results for free self-diffusion. Simulation parameter is a number of simulated trajectories (particles). Signal from image Adshybsamnulating
N = 10° trajectories. For image B, fQrajectories are simulated; 1@nd 10 trajectories are used for simulation results on images C and D.

The signal is obtained by simulatiny spin trajectories laghan and colleaguesly, 17, 3. The comparison shows
within compartment of the size, with uniformly distributed very good agreement inside the range of the spin-echo sig:
starting positions. larger than 0.01. The solid line in Fig. 3 shows the simulate

To test the computer simulation, we have first simulated tisggnal that can be compared with Fig. 3 5. The dashed
case of free self-diffusion. The spin-eclosignal from the curve in Fig. 3 shows the result based on the short gradie
bulk of sample is given by pulse (SGP) theoretical prediction. In fact, this theory does n
apply here because the gradient pulses used in the simulat
are relatively long§ = A/4 in Fig. 3A andsé = A in Fig. 3B).

1 N N
E(27) = (> cosh)?+ (2, sin 6,2 [24]
i=1 i=1 4. RESULTS AND DISCUSSION

Figure 2 shows the simulated spin-echo signal as a function ofin Figs. 4 and 5 the results of the numerical simulation of th
time 2r in comparison to the theoretical signal for a PGSEpin-echo spatial distribution are compared with the theoretic
measurement of free self-diffusion. The deviation of the sinprediction based on Fick’s diffusion law, where VCF is a delt:
ulated results from the theoretical values can be sufficienfiynction. In Fig. 6 the simulation is compared to the attenuatic
reduced by simulating £810° trajectories. As we can see, thisobtained with use of the spatially and temporary depende
approach assures enough accuracy for the spin-echo sigi@F for the restricted diffusion according to Eqgs. [11] anc
larger than 0.01. Since Monte Carlo methods by nature cdiz2]. The results of theory are also compared with the expe
verge asymptotically slowly, other methods of simulatiormentally obtained spin-echo distribution from the MRI edge
should be used (for example se&7)) if higher accuracy is enhancement measurements, when the particle displacem
required. were shorter than the size of pore. These results corresponc
The second test of the computer simulation was the cotite PGSE sequence wheke= §, andr ~ A. To generalize the
parison of the spin-echo signal attenuation from the bulk dfscussion we introduce nondimensional variables for diffusic
sample for restricted self-diffusion with the results of CallengthL = L/a = V/2D27/a and average dephasing factor
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A 4.1. Short Diffusion Times

When the duration of a PGSE sequence is short enough tl
only the minority of spin-bearing particles collides with the
boundary, the molecules exhibit almost the same dynamics
in the case of free self-diffusion. In this approximation the
spin-echo distribution in a pore from Eq. [14] is calculated witl
the use of Eq. [7] for MSD and Eq. [8] for the phasing factor

0.1

0.01 |
Ea)

0.001 f

0.0001 ' ‘* The results provide a good fit to the results of numeric
simulation, as seen in Fig. 4. It confirms, on an empirical basi
0.00001 . ] 2 R Y that this zeroth approximation works well, as long as th

diffusion displacement is short_(< 0.1). Theagreement
between Einstein’s approximation of VCF and the simulatio
B is very good because the edge enhancement results mai
from the eigenvalue nature of Egs. [14], i.e., the oas(/a)
term, while the long negative time tail of VCF has a negligible
effect.

qa

0.1

0.01
Eaq) 4.2. Larger Diffusion Times

0.001 F

Implementation of Eq. [7] for long gradient pulse causes

0.0001 : deviation, as shown in Fig. 5. The difference increases with tt

diffusion time. Curiously, the theory that seems to perfectl

0.00001 : agree with the simulation when considering the spin respon
0 1 2 3 4

from the bulk fails when it is used for the prediction of the
spatial distribution of the spin-echo signal. It indicates the
FIG. 3. Simulated PGSE signal for the case of restricted self-diffusioy CF with the fast decay, a delta function approximation, is nc
bem?fnegara\'/{f'”p'a”es S?F’a:ate‘jflmy_as as function of productia +. appropriate when particle displacements are comparable to-
I(gv’\;)n g:’/ o O_gazs/gﬁ rﬁgggcx’sre:eztl'zg'i m;’g;eg: gafﬂ_etg; n:ev\tag dize of the pore. According to Ref2,(37) and Egs. [11] and
obtained by simulatingd = 10° trajectories. The solid line shows simulated[12], the effect of the wall is to add a small but long negativ
results and the dashed curve shows for reference the theoretical attenuatiotifee tail to the VCF. For very long times the effect of this
the short gradient pulse limit. negative correlation essentially cancels out the effect of tf
initial positive collision correlation for short diffusion time. In
F. = F.a. The discussion is divided into three parts. Thehis generalized form, the time integration in Eq. [4] provide:
comparison between the simulated and theoretical results of the MSD that cannot be larger than the pore size.
spin-echo spatial distributions is performed for short diffusion Therefore, the temporally and spatially dependent VCF f
times C < 0.1) in thefirst part and for larger diffusion times reflecting walls (Eq. [12]) is needed to get the MSD in Eq. [4
(L > 0.5) in thesecond part. While in the third part, the resultand to calculate special dependence of the spin-echo atten
of simulation are compared with the experimental results tbn. Since the spatially averaged MSI§§, approaches the

qa

MRI edge enhancement. asymptotic valueVa®/6 for long diffusion times, we can
A B o7
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dEO'6 dE
03
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[ . : g * * * * . : 0 - -
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FIG. 4. Spin-echo spatial distribution for self-diffusion between parallel reflecting planes for short diffusion ﬁ.mesO(;l), predicte~d by simulation
gagged line) ~and theory, VCF agproximated yvith a delta funcEion, (smooth~|ine). System parameters are the following: image0A04,F,, = 15.4 and
L, = 0.052,F,, = 27, image BL, = 0.028,F,, = 115.8 and_, = 0.033,F,, = 162.2.Pulse duration and pulse separation are the same for all imag
A~ dandt =~ A.
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FIG.5. Spin-echo spatial distribution for self-diffusion between parallel reflecting planes for intermediate and long diffusiof. tim@s5 andl > 0.5),
respectivgly, and preﬂdicted by simulation gagged Iine) and theory, VCF approximated with a delta function (smooth line). System parametetioaiaghe
image A:L = 0.52,F, = 21.6,image B:L = 0.63,F, = 30.9. Pulse duration and pulse separation are the same for all imAgesé andr ~ A.

distinguish between the diffusion displacem&jtwhich has 4.3. Experimental Results

an upper limit and the diffusion length, calculated as the h ) | | ilable f h q
diffusion displacement in the free self-diffusion case. The The experimental results are available from the MRI edg

diffusion displacement stands for the average distance betwggnancement in the compartment where the diffusion displac

the starting and the current position of the particle, wiiile ments were much shorter than the wall interspacing. Th

represents the averaged length of the forth-and-back traveliﬁ?funs_ have already been publishég)( nge we compare th_e
The spin dephasing, was calculated by using a v /ntensities of enhanced edges and the intensity of the midc

averaged over the space of confinement, Eq. [13] as obtaine@,‘ﬂ’ft |Of tf:je in:ja?]e With thlel reslults c|>f nl;mherical silmulgtioné /
Ref. 2), thus, ignoring the spatial dependence in expressi finulated and theoretical log-log piot of the signalin Fig. 8 a
[5]. The spatial dependence of VCF was taken into accou?nfuncngn of time e>.<h|b|ts a good agreement_wnh the exper
only for the MSD, Eq. [4]. With these modifications, thdnent, Fig. 7. According to slopes, the attenuation of bulk sign

3 S . : X
calculated spatial distribution of attenuation from Eq. [14] igcreases as’. A deviation from this law on the MR image is

Fig. 6 shows a better fit Fig. 5 for intermediate displacemen He to the experimental error. The lines of enhanced e-dge.s
[ ~ 0.5. Forlarger displacementd, > 0.5, thetheoretical oth cases follow almost a linear dependence on the diffusi

attenuation is again too weak compare to the results of sinf(j"e: This agrees with the theory, where the line broadenin

T . 2 .
lation. This departure might be caused either by the neglect\%t?'Ch IS proporhonal tq MSDR, N 2D27, lowers the inten
ity of enhanced lines in proportion.

the spatial dependence of VCF in the dephasing term Eg. [5]
by the insufficiency of the Gaussian approximation for long

diffusion displacements inside entirely closed pores. Cumu- 5. CONCLUSION

lants higher then the second might not be negligible. In contrast

to this, Eq. [3] perfectly explains the measurements of self-In this analysis, the numerical simulation of the spin-ech
diffusion attenuation in a medium of interconnected poP&s.( attenuation with finite-width gradient pulses was used to te
This might indicate an importance of medium permeabilityarious approximations of velocity correlation function wher
when using the Gaussian approximation for NMR of restrictediffusion in the closed pore is considered. Comparison
diffusion. simulation results with the theoretical evaluation and the e:
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0.15
dE dE
01 0.08

0.05

0 0

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
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FIG. 6. Spin-echo spatial distribution for the case of diffusion displacements between parallel and reflecting walls for intermediate and long diffasio
(L ~ 0.5 and > 0.5), respectively, predicted by simulation (jagged line) and theory accounting for the spatially dependent modified Oppenheim—Mazt
(smooth line). System parameters are the following: imagé A: 0.52,F, = 21.6,image B:L = 0.63,F, = 30.9. Pulse duration and pulse separation
are the same for all imaged: ~ é andr ~ A.
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perimental results of MRI edge enhancement is focused on the 21
distribution of spin-echo signal within the confinement. The 21
simulation studies hitherto considered the signal from the bulk =z 1.9 y a3.0Ln(t)
of the sample while the present analysis is focused on the %1_3‘ o T
spatial distribution of the signal to get a detailed insightinto the = 17 ——x=0,a
occurrence in the proximity of the walls. For VCF in Einstein's ¥ ¢
. . . . . . . : y a 1.50Ln({t)
approximation (delta function), the attenuation distribution ob- 15
tained by the cumulant expansion in the Gaussian approxima-
. . . . . . 1.4 g T T v
tion gives a good fit to the results of the simulation (Fig. 4) for 007 0075 008 0085 009  0.005
the mean squared displacement short compared to the size of t

the compartment,l( < 0.1). Clearly, at short times, the edge FIG.8. Intensities of various sections of a one-dimensional theoretical ar

e_nhancemem is only due to the boundary ?Onditions and HQulated MR image as a function of time of the spin-echo in logarithmic sca
eigenvalue nature of Egs. [10] and [14], while the long negas = 0.03T/m,a = 2.8 mm,D = 2 - 10~° m?s). The signal of the bulk

tive time tail of VCF can be neglected. However, this approxpin-echo & = a/2) decreases witk(t) « e " and the lines of enhanced
. . . . . . — —ptl.

imation deviates strongly from the result of simulation (Fig. 53d9es & = 0, a) follow E(t) = ™™

when the number of spins collisions on walls increages>(

0.1). Curiously, the theory of short gradient pulses, whicfy,ant proves a sufficiency of the Gaussian approximation f

perfectly agrees with the simulation when the entire spin e spin-echo attenuation in interconnected po8), (this

sponse Is considered, fails to give the proper spatial diStribé{Udy implies a need either to account for cumulants high
tion for the MSD I_arggr than a _few te_nths of th? POr€ SIZ@han the second one or to take into account spatial depende
Therefore, Fick’s diffusion law is just a first approximation thaj ¢ spin dephasing, in the case of large displacements insi
has to be complemented with the details of motional Correléhtirely closed pores. Callaghan and Codd have used the i
tion in the confinement. For large diffusion displacements, Ise propagator me.thod to simulate MR edge enhancems
are seein_g interplay of the correlation dyn_amics gnd the bou g). The method generates thespace data for the profile and
ary conditions, so that a complete analysis requires the knows, ,iar transforming to get the spatial spin density. Thi
nge of the MSD as well as the \_/CF depe”de”‘?e on Besthod provides similar spatial intensity plots as our simulate
dlstancg from the waII._The Op_penhe|m—Mazursqut|on of t sults (Figs. 4 and 6). However, it also generates a spect
Langevin equation, which provides the VCF averaged Overtﬁf‘stortion that unreality broadens the image far beyond tt

space of confinemeng), is used to calculate an averaged splgdge of the sample. It is not the case with our method
dephasing-,, thus ignoring a spatial dependence in Eq. [5]5imulation

The spatial dependence was taken into account only for the
MSD, Eg. [4]. The results provide a good fit to the numerically
obtained dependence at least for an intermediate M&Ds (
0.5). This confirms the profound effect of the correlation, croscopy,” Oxford Univ. Press, Oxford, 1991

p_art_ICUIarly In-a m?dlum with SNma” pores. Hovx_/ev_er, the de_Z. E. Oppenheim and P. Mazur, Brownian motion in system of finite
viation for long displacementl( > 0.5) also indicates a size. Physica 30, 1833-1845 (1964).

deficiency of the Gaussian approximation. Although the expes. . karger and W. Heink, The propagator representation of molec-

ular transport in microporous crystallites. J. Magn. Reson. 51, 1-7
(1983).
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