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This article concerns the question of a proper stochastic treat-
ment of the spin-echo self-diffusion attenuation of confined par-
ticles that arises when short gradient pulse approximation fails.
Diffusion is numerically simulated as a succession of random steps
when motion is restricted between two perfectly reflecting parallel
planes. With the magnetic field gradient perpendicular to the
plane boundaries, the spatial distribution of the spin-echo signal is
calculated from the simulated trajectories. The diffusion propaga-
tor approach (Callaghan, “Principles of Nuclear Magnetic Reso-
nance Microscopy,” Oxford Univ. Press, Oxford, 1991), which is
just the same as the evaluation of the spin-echo attenuation by the
method of cumulant expansion in the Gaussian approximation,
with Einstein’s approximation of the velocity correlation function
(VCF) (delta function), agrees with the results of simulation only
for the particle displacements that are much smaller than the size
of the confinement. A strong deviation from the results of the
simulation appears when the bouncing rate from the boundaries
increases at intermediate and long gradient sequences. A better fit,
at least for intermediate particle displacements, was obtained by
replacing the VCF with the Oppenheim–Mazur solution of the
Langevin equation (Oppenheim and Mazur, Physica 30, 1833–
1845, 1964), which is modified in a way to allow for spatial
dependence of particle displacements. Clearly, interplay of the
correlation dynamics and the boundary conditions is taking place
for large diffusion displacements. However, the deviation at long
times demonstrates a deficiency of the Gaussian approximation
for the spin echo of diffusion inside entirely closed pores. Here, the
cumulants higher than the second one might not be negligible. The
results are compared with the experiments on the edge enhance-
ment by magnetic resonance imaging of a pore. © 2001 Academic Press

Key Words: molecular velocity correlation; nuclear magnetic
resonance; spin-echo; restricted; confined self-diffusion; spin spa-
tial coherence; porous system.

1. INTRODUCTION

The advance of NMR measurement techniques, suc
spin-echo and magnetic resonance microscopy, enables
tailed study of self-diffusion in fluids confined in a poro
medium. Here the influence of boundary restriction has im
tant implications on molecular motion and fluid transp
257
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Different theoretic approaches have been developed to de
the spin-echo attenuation of restricted diffusion. Two of th
are notable in being distinct in performing the average o
spin phase to get the spin-echo attenuation. These ar
propagator method (1, 3, 4) and the method of the cumula
expansion in the Gaussian approximation (5–8). The purpos
of this paper is to test these methods with the result
computer simulation of the spin-echo signal distribution in
entirely closed pore, as well as with the previously publis
results of simulation (9) and experiments on magnetic re
nance imaging (MRI) diffusion edge enhancement (10).

Although the use of magnetic field gradients to detec
translational displacement of molecules via the precessi
their atomic nuclear spins dates back into the early day
NMR (11), some obscured problems concerning measure

f diffusion in a system, for which restriction to motion cau
deviation from the Fickian behavior, still remain open.
loch equation with the diffusion term (Bloch–Torrey eq

ion) (12) has been introduced to describe the spin-echo a
ation in a bulk of homogeneous liquid, while Stejskal
anner (13) initiated the methodology and theory of the pul
radient spin echo (PGSE, Fig. 1) for measurements o
tricted molecular self-diffusion. The self-diffusion coeffici
educes due to molecular collisions with barriers when the
nterval between the gradient pulses is long enough. The P

ethod has been extensively investigated. A number of st
onsider various problems of molecular self-diffusion i
ounded region, using the diffusion propagator from the fa

ar Einstein’s formula (14) for Brownian motion (leading t
ick’s diffusion equation) to average out the motional s
hase fluctuations. Among others, Callaghan has foun
iffusive diffraction of the spin-echo signal as a function of
radient magnitude (1, 4, 15). The method provides inform

ion about the microstructure of a heterogeneous syste
ectly from the PGSE measurements. Although spin p
veraging with Fick’s diffusion propagator was able to disc
ew effects, its application is limited to the spin-echo sequ
onsisting of two short gradient pulses (16).
Fick’s diffusion equation, which is commonly used to de
1090-7807/01 $35.00
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258 DUH, MOHORIČ, AND STEPIŠNIK
the propagator, is adequate in describing the underlying
cess of spin phase fluctuations only after some informati
lost by limiting the precision of temporal and spatial meas
ments (7, 18). The equation might describe a process o
cruder level than a process of diffusion in a small restri
region allows for. This means that the application of
propagator method to the restricted diffusion, when the p
cles’ mean displacement is comparable to the size of po
quite questionable.

In parallel, the method that handles the spin phase av
with the use of cumulant expansion in the Gaussian app
mation (19, 20) has been introduced. This method links
single-particle velocity correlation function (VCF), which co
tains details of motion and interaction on the molecular le
to the spin-echo variables. It enables one to observe the
of microscopic motion through the window, whose openin
determined by the form of the gradient pulse sequence (21, 22).
Properly shaped sequences become a tool to acquire inf
tion, not only about macroscopic flow and diffusion, but a
about the motion on a molecular level (23, 24). For the spin
echo attenuation caused by restricted diffusion, this appr
provides a new understanding of the phenomena (6, 7, 25).

Both methods give an identical result for the free diffus
described by Einstein’s formula for the VCF (14), but the
restricted diffusion is an example where a difference oc
(6, 7). The experiments (25) verify that the cumulant expansi
in the Gaussian approximation properly describes the
echo diffusion measurements in a medium of interconne
pores when a long or modulated gradient sequence is ap
However, it has been also confirmed (6) that this metho
predicts less distinctive pits of the diffusive diffraction patt
(6) in comparison to the results obtained by the propag
method (15) for the diffusion in a system of completely clos
pores.

The aim of this paper is to set the measure for compa
these theoretical approaches with the results of numerica

FIG. 1. The combination of RF and gradient pulses for a PGSE ex
ment. The symbold represents the length of the gradient pulse:D is the time

etween two successive gradient pulses. Spin-echo peak appears aftert
from the start of the experiment.
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ulation and with the results of previous experiments on
edge enhancement in the magnetic resonance imaging. In
of simulating the mean spin response from the bulk of sam
as has been shown in many references (15, 17, 26–28) we dea
here with the spatial distribution of the spin-echo signal
small compartment. In Ref. (9), the signal distribution has be
studied by the use of the impulse-propagator method bas
the matrix multiplication for long gradient pulses. This met
numerically overcomes the short pulse limit of the propag
approach, but for long evolution time the spectral distor
appears which unreality broadens the image far beyon
edge of the sample. Although it provides a similar sig
intensity compared to our results, here a simulation meth
needed that provides distribution with higher accuracy f
precise comparison with theories.

The simulated spatial distribution of the spin-echo si
represents an equivalent of the MR image, if assuming the
acquisition interval to be short enough, with respect to
inverse rate of the diffusion attenuation. Otherwise, the s
echo attenuation within the readout interval cannot be negle
It might unnecessarily complicate the calculations. The resu
simulation can also be compared with the results of MRI diffu
edge enhancement obtained in Refs. (10, 29–32).

2. THEORY

2.1. The Mean of the Spin Phase Fluctuation

Whenever a nonuniform magnetic field is used in NMR
encode the spin magnetization for motion rather than pos
it is appropriate to refocus any spin phase shift, due to abs
spin position, in a spin echo. This means that the time int
of the effective gradient,G(t), is zero. A small perturbation
the spin phase, due to molecular displacements in the ma
field, can be written asu (2t) 5 g * 0

2t G(t) z r (t)dt 5 2* 0
2t

F(t) z v(t)dt. HereF(t) 5 g * 0
t G(t9)dt9, 2t is the time of the

phase refocusing,r (t) is the instantaneous position of
particle, andv(t) is its velocity. Since the detected signal ar
from the induction of immense number of spins (@106), one
does not detect the frequency fluctuations of individual spin
rather a coherent superposition of signals induced by this
number of spins. Regarding their location in a nonunif
magnetic field, particularly in MRI, one can distinguish gro
of spins according to their precessional frequency at the
2t. For such grouping, the averages within the subensem
have to be performed. Thus, the spin-echo signal peak c
written as (7)

E~2t! 5 O
j

Ejo^e
2i * 0

2t Fj~t!zvj~t!dt&. [1]

Here the summation is taken over the subensembles of
and Ejo is the normalized amplitude of thej th subensembl
^. . .& denotes the ensemble average over the motion of par

i-

e 2
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259COMPUTER SIMULATION OF THE SPIN-ECHO SPATIAL DISTRIBUTION
in the j th subensemble.v(t) can be considered a stocha
variable and the average can be treated within the frame
theory of stochastic process. The mean of spin phase flu
tions is commonly worked out with the use of the diffus
propagator. The method has been introduced for mole
transport in microporous crystallites (3), where Fick’s propa
gator for the free diffusion was used as an effective aver
diffusion propagator to describe the diffusion in heterogen
systems. Despite the fact that the propagator for unbou
diffusion could have a limited validity when boundaries res
molecular motion, it provides a satisfactory explanation
diffusion measurements in confinements. A number of e
solutions for the propagator in different geometries are a
able by solving Fick’s law using the standard eigenm
expansion (33).

Since the form of Eq. [1] is like a characteristic function
a stochastic process (34), one can employ the cumulant exp
ion method known from the theory of probability to calcu
he mean of the spin phase. According to general theore
tatistical physics, the characteristic function of a stoch
rocess exists, even if the propagator does not (18, 35). This

means that a stochastic process is fully described either b
probability distribution function, i.e., the propagator, or by
correlation functions. The characteristic function generate
mulants, i.e., the combination of moments, which are
multiple integrals of the correlation functions. In the parla
of NMR, this means that evaluation of the spin phase ave
can be justified either with the propagator method, if we k
the distribution function, or with the cumulant expansion, w
the moments are known. Exact distribution function or
correlation functions are hardly ever available and the pro
can only be handled with approximations. The cumulant
pansion method in the Gaussian approximation allows u
assume that the cumulants higher than the second c
neglected. Thus, the characteristic function is defined on
the averagêv(t)& and the second moment^v(t 1)v(t 2)&. Thus
the cumulant expansion of the spin phase (which is lik
characteristic function, Eq. [1]) provides

^e2i * 0
2t F~t!zv~t!dt& 5 e2i * 0

2tF~t!z^v~t!&dt

3 e2~1/ 2! * 0
2t dt1 * 0

2t dt2F~t1!z^v~t1!v~t2!&cF~t2!. [2]

Here the subscriptc in ^. . .& c means the cumulant combinat
of the first- and the second-order moments (34) (^ab& c 5 ^ab&

^a&^b&).

2.2. Spin-Echo Distribution in a Pore

In porous media of closely packed polystyrene beads
measurement of restricted diffusion by the modulated gra
spin-echo method (25) confirms the anticipated dependenc
spin-echo attenuation on time, gradient strength, and mo
tion frequency. The results perfectly correspond to the c
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lations based on the spin phase averaging using the cum
expansion in the Gaussian approximation. This theory g
the spin-echo signal of confined spins as (6, 7, 10)

E~2t! 5 O
j ,k

E0jSk~Faj!e
i ~Faj2k!r j~0!e2~1/ 2!k 2R gj

2 ~2t!. [3]

This expression comprises the structure terms of spin de
ing in inverse space asSk(Faj) that are attenuated by the fac
depending on the mean squared displacementRgj

2 (2t) of the
particle (MSD) from thej th subensemble. The wave vectork
are related to the allowed momentum states of confined
cles. The subscriptg in MSD and in other variables denotes
component along the direction of the applied gradien
similar result is obtained in Ref. (15) by using the diffusio
propagator method. Both results differ in the definition oFa

andRg
2. They are identical in the limit of short intervals wh

MSD is approximated asRg
2(2t) ' 2D2t and when a se-

uence with the short gradient pulses givesFa 5 gGd. How-
ever, the generalized form of MSD is given by

Rgj
2 ~2t! 5 E

0

2t E
0

2t

^vgj~t1!vgj~t2!&dt1dt2. [4]

ere the VCF,̂ vgj(t 1)vgj(t 2)&, contains the microscopic deta
of molecular motion in a confined space. Clearly, VCF dep
on the duration of the measurement as well as on the loc
of the j th spin subensemble. The phasing factorFaj (10) rep-
resents the average dephasing of a spin in thej th subensembl
which is, in generalized form,

Faj 5
f Î* 0

2t dt1 * 0
2t dt2F~t1! z ^vgj~t1!vgj~t2!& z F~t2!

Rgj~2t!
. [5]

he unit vectorf is aligned along the direction of the appl
radient.
The stochastic process of spin locationr (t), which is derived

from an underlying process of the velocity fluctuationsv(t), is
not in general Markovian, but acquires the Markovian cha
ter after some information is lost by limiting the precision
spatial and temporal measurements. Thus the conditional
ability coincides with Fick’s diffusion equation for the valu
of t much larger than the correlation time of molecular c
ionst c (Einstein’s approximation) and for the spatial res-

tion limited to a scale larger than the molecular mean free
l . The resulting conditional probabilityPo(r , tur o), which is
ommonly used to get the spin phase average for short gra
ulses, is related to VCF in the form
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260 DUH, MOHORIČ, AND STEPIŠNIK
^v j~t1!v j~t2!& 5 2DS1 0 0
0 1 0
0 0 1

Dd~t1 2 t2!. [6]

ere D denotes the macroscopic self-diffusion constan
simplifies Eqs. [4] and [5] to

Rgj~2t! 5 Î2D2t [7]

and

Faj 5 f Î 1

2t E
0

2t

uF~t1!u 2dt1. [8]

Thus, the cumulant expansion in the Gaussian approx
ion provides an identical result as the propagator method
t allows one to apply any kind of gradient pulse sequence
radient pulse width or shape can violate the short p
pproximation required for the use of the propagator me
This means that Einstein’s approximation (or Fick’s pro

ator method) can be used for restricted diffusion only w
he spin-echo sequence is short enough that a major
pin-bearing particles do not reach the compartment bo
ries. The delta function is a reasonable approximation fo
CF when the rate of intermolecular collisions is much hig

han the rate of collisions with the walls,t c ! 2t ! tw. This
means that a better approximation for the VCF is neede
longer times, when 2t ' tw. It can be solved by using th
probability distribution function from Fick’s equationPo(r ,
tur o) to calculate MSD according to the formula

Rg
2~t, r ! 5 E

V

~r 2 r o!
2Po~r , tur o!d

3r o. [9]

Its second time derivative provides VCF, which is neede
get the phase factorFa(r ) from Eq. [5].

In the following, we deal with the spatial distribution of t
spin-echo signal. Therefore, we have to extend the formu
the mean spin response from the bulk of sample Eq. [3] t
formula for the spatial distribution of the spin response
order to neglect the effect of the gradient to attenuation in
readout interval, we assume the data acquisition intervadt,
short compared to the inverse rate of the diffusion attenua
dt ! 1/Fa

2D. Then the spatial distribution of the spin-ec
signal, induced by thej th subensemble of spins located aro
r , can be written as

dE~2t, r ! 5 E0~r ! O
k

Sk~Fa~r !!ei ~Fa~r !2k!zre2~1/ 2!k 2Rg
2~2t,r !.

[10]
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Attention is focused on the diffusion of molecules insid
closed pore with perfectly reflecting walls. For the sake
simplicity, we deal with one-dimensional problem, with sp
bearing particles trapped between parallel planesx 5 0 and
x 5 a, and with gradient applied normal to the planes. In
case the MSD of a spin located atx in the direction of th
applied gradient is (36)

Rg
2~t, x! 5

1

a E
0

a

~ x9 2 x! 2Po~ x9, tux!dx9

5
1

3
~a2 2 3ax 1 3x2!

1 O
n51

` 4a~ x 1 ~a 2 x!~21! n!

n2p 2

3 cosFnp

a
xGe2~n 2p 2/a 2! Dt [11]

and the VCF in the second approximation is

^vgj~t!vgj~0!& 5
1

2

d2

dt2 Rg
2~t, xj!

5 2DSd~t! 1
D

a3 O
n51

`

~ xj 1 ~a 2 xj!~21! n!

3 n2p 2cosFnp

a
xjGe2~n 2p 2/a 2! DtD . [12]

In addition to the short correlation of the local stocha
motion, VCF features a long negative time-tail with the de
time proportional to the time-of-flight across the pore,tw '
a2/D. The average of VCF over the pore volume is

^vg~t!vg~0!& 5 2DSd~t! 2
4D

a2 O
k51

`

e2~~2k21! 2p 2/a 2! DtD . [13]

This result is identical to the solution of the Langevin equa
for particles confined between parallel planes that was obt
by Oppenheim and Mazur (2) long ago. The simulation o
molecular motion in a system constrained by capillary w
gives, on hydrodynamic grounds, a similar negative deca
algebraic form (37). Recently, it has been verified experim
tally by the method of modulated gradient spin echo (25).

For the diffusion between parallel planes, the spin-e
mplitude exhibits the spatial distribution
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261COMPUTER SIMULATION OF THE SPIN-ECHO SPATIAL DISTRIBUTION
dE~2t, x! 5 U O
n50

`

Sn~Fa~ x!!cosFnp

a
xG

3 e2~1/ 2!~n 2p 2/a 2! Rg
2~2t, x!U , [14]

with

Sn~Fa! 5 2iF a~ x!
1 2 ~21! ne2iFa~ x!a

n2p 2 2 F a
2~ x!a2 [15]

for n . 0 and

S0~Fa~ x!! 5
1 2 e2iFa~ x!a

iF a~ x!a2 . [16]

These formulas will be used to compare the spin-echo d
bution in a pore to the results of the numerical simulation

3. SIMULATION

The validity of theoretical models has been tested by
computer simulation of the Brownian motion in a restric
space. Instead of considering the mean spin response fro
bulk of sample, the simulation has been focused on the s
distribution of the spin-echo signal within two parallel refle
ing planes.

A common way to simulate self-diffusion is to represent
diffusion as a random walk of particles. The particle motio
represented as a sequence of small random displaceme

x~t 1 Dt! 5 x~t! 1 Dx, [17]

herex(t) is the position of the particle at timet, x(t 1 Dt)
s the position at timet 1 Dt, andDx is a random displaceme
f the particle in the time intervalDt. Stochastic properties

he random displacement are associated with stochastic
rties of a Brownian particle. The position of a free Brown
article may be treated as a Markov process on a coarse
cale. In one dimension the Brownian particle jumps back
orth along thex-axis. Jumps may have any length. The p
ability is symmetrical and independent of the starting pos
and falls off rapidly for large jumps. Stochastic propertie
the particle displacementDx in the time intervalDt (Dt 3 0)
are

^Dx&

Dt
5 0,

^~Dx! 2&

Dt
5 2D,

^~Dx! n&

Dt
5 0, [18]

where D is the macroscopic self-diffusion constant. Mic
scopic random displacements of the particle are the res
ri-
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collisions with surrounding particles and are associated
the constantD. The Brownian particle obeys Fick’s diffusi
law Ṗ 5 D¹ 2P. P( x, t) is the probability density that
particle moves byx in time t. The well-known solution for th
special case of unrestricted Brownian motion with the in
conditionP( x, 0) 5 d( x) is

P~ x, t! 5
1

Î4pDt
e2~ x 2/4Dt!. [19]

This is the Gaussian function with its maximum at the or
and whose width grows with a square root of time=^x2(t)& 5
=2Dt.

The random walk displacement,Dx, is therefore given by

Dx 5 Î2DDtj, [20]

wherej is a random number. The random numbers are un
related and they are distributed according to the Gau
distribution withs 5 1,

P~j! 5
1

Î2p
e2~j 2/ 2!. [21]

For a restricted space the particle trajectory is obtaine
using Eqs. [17] and [20] and corrected with the bound
condition. For perfectly reflecting walls located atx 5 0 and
x 5 a, the reflecting boundary condition is accounted fo
replacingx with 2x, or x with 2a 2 x, wheneverx , 0 or
x . a, respectively. We are dealing with a pulse sequence
two gradient pulses of strengthG and durationd, separated b
time D. The gradient is perpendicular to the plane bounda
The simulated spin phase shift for a single spini is given by

u i~2t! 5 u i 5 gGDt~O
t50

t#d

xi~t! 2 O
t5D

t#D1d

xi~t!!. [22]

Since the particle position randomly varies with time,
accumulated phase shift is different for every trajectory
calculate the spin-echo distribution, we divide the space a
able to spins intoNx equal parts of lengthDa 5 a/Nx. Nx thus
represents the number of pixels in the image andDa is the
spatial resolution. Spin-echodE of the spins located inDa at
x, at the time 2t of the spin-echo peak, is given by

dE~ x, 2t! 5
Nx

N Î~O
i[I

cosu i!
2 1 ~O

i[I

sin u i!
2, [23]

whereI is the set of all trajectories ending withinDa at x in
ime 2t: I 5 { i ; x (2t) [ [ x, x 1 Da)}.
i
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262 DUH, MOHORIČ, AND STEPIŠNIK
The signal is obtained by simulatingN spin trajectorie
within compartment of the sizea, with uniformly distributed
starting positions.

To test the computer simulation, we have first simulated
case of free self-diffusion. The spin-echoE signal from the

ulk of sample is given by

E~2t! 5
1

N Î~O
i51

N

cosu i!
2 1 ~O

i51

N

sin u i!
2. [24]

igure 2 shows the simulated spin-echo signal as a functi
ime 2t in comparison to the theoretical signal for a PG
measurement of free self-diffusion. The deviation of the
ulated results from the theoretical values can be suffici
reduced by simulating 105–106 trajectories. As we can see, t

pproach assures enough accuracy for the spin-echo
arger than 0.01. Since Monte Carlo methods by nature
erge asymptotically slowly, other methods of simula
hould be used (for example see (27)) if higher accuracy i

required.
The second test of the computer simulation was the

parison of the spin-echo signal attenuation from the bul
sample for restricted self-diffusion with the results of C

FIG. 2. Simulated signal for free self-diffusion as a function of timet 5
he following: D 5 2 z 1029 m2/s, G 5 0.5 T/m, t 5 2t 5 0–13 ms.Sim
heoretical results for free self-diffusion. Simulation parameter is a numb
N 5 103 trajectories. For image B, 104 trajectories are simulated; 105 and 1
e

of
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nal
n-
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laghan and colleagues (15, 17, 38). The comparison show
very good agreement inside the range of the spin-echo s
larger than 0.01. The solid line in Fig. 3 shows the simul
signal that can be compared with Fig. 3 in (15). The dashe
urve in Fig. 3 shows the result based on the short gra
ulse (SGP) theoretical prediction. In fact, this theory doe
pply here because the gradient pulses used in the simu
re relatively long (d 5 D/4 in Fig. 3A andd 5 D in Fig. 3B).

4. RESULTS AND DISCUSSION

In Figs. 4 and 5 the results of the numerical simulation o
spin-echo spatial distribution are compared with the theore
prediction based on Fick’s diffusion law, where VCF is a d
function. In Fig. 6 the simulation is compared to the attenua
obtained with use of the spatially and temporary depen
VCF for the restricted diffusion according to Eqs. [11] a
[12]. The results of theory are also compared with the ex
imentally obtained spin-echo distribution from the MRI e
enhancement measurements, when the particle displace
were shorter than the size of pore. These results correspo
the PGSE sequence whereD ' d, andt ' D. To generalize th
discussion we introduce nondimensional variables for diffu
length L̃ 5 L/a 5 =2D2t/a and average dephasing fac

for the PGSE measurement, whereD ' d andt ' D. System parameters a
tion results are represented with a solid line. The dashed line represe
of simulated trajectories (particles). Signal from image A is obtained by simulating
ajectories are used for simulation results on images C and D.
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263COMPUTER SIMULATION OF THE SPIN-ECHO SPATIAL DISTRIBUTION
F̃ a 5 Faa. The discussion is divided into three parts.
comparison between the simulated and theoretical results
spin-echo spatial distributions is performed for short diffu
times (L̃ , 0.1) in thefirst part and for larger diffusion time
(L̃ . 0.5) in thesecond part. While in the third part, the res

f simulation are compared with the experimental result
RI edge enhancement.

FIG. 3. Simulated PGSE signal for the case of restricted self-diffu
between parallel planes separated bya, as a function of productqa 5
2p)21gGda. Walls are perfectly reflecting. System parameters are the-

lowing: D 5 0.6a2/D, image A: d 5 D/4, image B:d 5 D. Signal was
btained by simulatingN 5 106 trajectories. The solid line shows simula

results and the dashed curve shows for reference the theoretical attenua
the short gradient pulse limit.

FIG. 4. Spin-echo spatial distribution for self-diffusion between par
jagged line) and theory, VCF approximated with a delta function, (smo

L̃ 2 5 0.052,F̃ a2 5 27, image B:L̃ 1 5 0.028,F̃ a1 5 115.8 andL̃ 2 5 0.03
' d andt ' D.
the
n

f

4.1. Short Diffusion Times

When the duration of a PGSE sequence is short enoug
only the minority of spin-bearing particles collides with
boundary, the molecules exhibit almost the same dynam
in the case of free self-diffusion. In this approximation
spin-echo distribution in a pore from Eq. [14] is calculated w
the use of Eq. [7] for MSD and Eq. [8] for the phasing fac
The results provide a good fit to the results of nume
simulation, as seen in Fig. 4. It confirms, on an empirical b
that this zeroth approximation works well, as long as
diffusion displacement is short (L̃ , 0.1). The agreemen

etween Einstein’s approximation of VCF and the simula
s very good because the edge enhancement results m
rom the eigenvalue nature of Eqs. [14], i.e., the cos(npx/a)
term, while the long negative time tail of VCF has a neglig
effect.

4.2. Larger Diffusion Times

Implementation of Eq. [7] for long gradient pulse caus
deviation, as shown in Fig. 5. The difference increases wit
diffusion time. Curiously, the theory that seems to perfe
agree with the simulation when considering the spin resp
from the bulk fails when it is used for the prediction of
spatial distribution of the spin-echo signal. It indicates
VCF with the fast decay, a delta function approximation, is
appropriate when particle displacements are comparable
size of the pore. According to Refs. (2, 37) and Eqs. [11] an
[12], the effect of the wall is to add a small but long nega
time tail to the VCF. For very long times the effect of t
negative correlation essentially cancels out the effect o
initial positive collision correlation for short diffusion time.
this generalized form, the time integration in Eq. [4] provi
the MSD that cannot be larger than the pore size.

Therefore, the temporally and spatially dependent VCF
reflecting walls (Eq. [12]) is needed to get the MSD in Eq.
and to calculate special dependence of the spin-echo at
tion. Since the spatially averaged MSD,R̃g

2, approaches th
asymptotic value=a2/6 for long diffusion times, we ca

n

l

for

l reflecting planes for short diffusion times (L̃ , 0.1), predicted by simulatio
line). System parameters are the following: image A:L̃ 1 5 0.04, F̃ a1 5 15.4 and

a2 5 162.2.Pulse duration and pulse separation are the same for all im
alle
oth
3,F̃
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264 DUH, MOHORIČ, AND STEPIŠNIK
distinguish between the diffusion displacementRg which has
an upper limit and the diffusion lengthL, calculated as th
diffusion displacement in the free self-diffusion case.
diffusion displacement stands for the average distance be
the starting and the current position of the particle, whiL
represents the averaged length of the forth-and-back trav

The spin dephasingFa was calculated by using a VC
averaged over the space of confinement, Eq. [13] as obtain
Ref. (2), thus, ignoring the spatial dependence in expres
[5]. The spatial dependence of VCF was taken into acc
only for the MSD, Eq. [4]. With these modifications,
calculated spatial distribution of attenuation from Eq. [14
Fig. 6 shows a better fit Fig. 5 for intermediate displacem
L̃ ' 0.5. Forlarger displacements,L̃ . 0.5, thetheoretica
attenuation is again too weak compare to the results of s
lation. This departure might be caused either by the negle
the spatial dependence of VCF in the dephasing term Eq.
by the insufficiency of the Gaussian approximation for l
diffusion displacements inside entirely closed pores. Cu
lants higher then the second might not be negligible. In con
to this, Eq. [3] perfectly explains the measurements of
diffusion attenuation in a medium of interconnected pores25).
This might indicate an importance of medium permeab
when using the Gaussian approximation for NMR of restri
diffusion.

FIG. 5. Spin-echo spatial distribution for self-diffusion between paral
espectively, and predicted by simulation (jagged line) and theory, VCF
mage A: L̃ 5 0.52, F̃ a 5 21.6, image B:L̃ 5 0.63, F̃ a 5 30.9. Pulse d

FIG. 6. Spin-echo spatial distribution for the case of diffusion displac
(L̃ ' 0.5 andL̃ . 0.5), respectively, predicted by simulation (jagged line
smooth line). System parameters are the following: image A:L̃ 5 0.52, F̃ a

re the same for all images:D ' d andt ' D.
e
en

g.

in
n

nt

s,

u-
of
or
g
u-
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f-

y
d

4.3. Experimental Results

The experimental results are available from the MRI e
enhancement in the compartment where the diffusion disp
ments were much shorter than the wall interspacing.
results have already been published (10). Here we compare th
intensities of enhanced edges and the intensity of the m
part of the image with the results of numerical simulation
simulated and theoretical log–log plot of the signal in Fig.
a function of time exhibits a good agreement with the exp
ment, Fig. 7. According to slopes, the attenuation of bulk si
increases ast3. A deviation from this law on the MR image
due to the experimental error. The lines of enhanced edg
both cases follow almost a linear dependence on the diffu
time. This agrees with the theory, where the line broade
which is proportional to MSD,Rg

2 5 2D2t, lowers the inten-
sity of enhanced lines in proportion.

5. CONCLUSION

In this analysis, the numerical simulation of the spin-e
attenuation with finite-width gradient pulses was used to
various approximations of velocity correlation function w
diffusion in the closed pore is considered. Compariso
simulation results with the theoretical evaluation and the

eflecting planes for intermediate and long diffusion times (L̃ ' 0.5 andL̃ . 0.5),
roximated with a delta function (smooth line). System parameters are thfollowing:
tion and pulse separation are the same for all images:D ' d andt ' D.

ents between parallel and reflecting walls for intermediate and long diffumes
d theory accounting for the spatially dependent modified Oppenheim–M
21.6, image B:L̃ 5 0.63, F̃ a 5 30.9. Pulse duration and pulse separa
lel r
app
ura
em
) an
5
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265COMPUTER SIMULATION OF THE SPIN-ECHO SPATIAL DISTRIBUTION
perimental results of MRI edge enhancement is focused o
distribution of spin-echo signal within the confinement.
simulation studies hitherto considered the signal from the
of the sample while the present analysis is focused on
spatial distribution of the signal to get a detailed insight into
occurrence in the proximity of the walls. For VCF in Einste
approximation (delta function), the attenuation distribution
tained by the cumulant expansion in the Gaussian appro
tion gives a good fit to the results of the simulation (Fig. 4)
the mean squared displacement short compared to the s
the compartment, (L̃ , 0.1). Clearly, at short times, the ed

nhancement is only due to the boundary conditions an
igenvalue nature of Eqs. [10] and [14], while the long n

ive time tail of VCF can be neglected. However, this app
mation deviates strongly from the result of simulation (Fig
hen the number of spins collisions on walls increases (L̃ .
.1). Curiously, the theory of short gradient pulses, wh
erfectly agrees with the simulation when the entire spin
ponse is considered, fails to give the proper spatial dist
ion for the MSD larger than a few tenths of the pore s
herefore, Fick’s diffusion law is just a first approximation t
as to be complemented with the details of motional cor

ion in the confinement. For large diffusion displacements
re seeing interplay of the correlation dynamics and the bo
ry conditions, so that a complete analysis requires the kn
dge of the MSD as well as the VCF dependence on
istance from the wall. The Oppenheim–Mazur solution o
angevin equation, which provides the VCF averaged ove
pace of confinement (2), is used to calculate an averaged s
ephasingFa, thus ignoring a spatial dependence in Eq.

The spatial dependence was taken into account only fo
MSD, Eq. [4]. The results provide a good fit to the numeric
obtained dependence at least for an intermediate MSD,L̃ #
0.5). This confirms the profound effect of the correlati
particularly in a medium with small pores. However, the
viation for long displacement (L̃ . 0.5) also indicates

eficiency of the Gaussian approximation. Although the ex

FIG. 7. Intensities of three sections of a one-dimensional experim
MR image as a function of time of the spin-echo in logarithmic scale (G 5
0.03T/m, a 5 2.8 mm,D 5 2 z 1029 m2/s). The signal of the bulk spin-ec
x 5 a/ 2) decreases withE(t) } e2bt3 and the lines of enhanced edges (x 5
, a) follow almostE(t) } e2bt.
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ment proves a sufficiency of the Gaussian approximatio
he spin-echo attenuation in interconnected pores (25), this
tudy implies a need either to account for cumulants hi
han the second one or to take into account spatial depen
f spin dephasing, in the case of large displacements i
ntirely closed pores. Callaghan and Codd have used th
ulse propagator method to simulate MRI edge enhance
9). The method generates thek-space data for the profile a

Fourier transforming to get the spatial spin density. T
method provides similar spatial intensity plots as our simu
results (Figs. 4 and 6). However, it also generates a sp
distortion that unreality broadens the image far beyond
edge of the sample. It is not the case with our metho
simulation.
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